278 research outputs found

    Odin (ANKS1A) is a Src family kinase target in colorectal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Src family kinases (SFK) are implicated in the development of some colorectal cancers (CRC). One SFK member, Lck, is not detectable in normal colonic epithelium, but becomes aberrantly expressed in a subset of CRCs. Although SFK have been extensively studied in fibroblasts and different types of immune cells, their physical and functional targets in many epithelial cancers remain poorly characterised.</p> <p>Results</p> <p>64 CRC cell lines were tested for expression of Lck. SW620 CRC cells, which express high levels of Lck and also contain high basal levels of tyrosine phosphorylated (pY) proteins, were then analysed to identify novel SFK targets. Since SH2 domains of SFK are known to often bind substrates after phosphorylation by the kinase domain, the LckSH2 was compared with 14 other SH2s for suitability as affinity chromatography reagent. Mass spectrometric analyses of LckSH2-purified pY proteins subsequently identified several proteins readily known as SFK kinase substrates, including cortactin, Tom1L1 (SRCASM), GIT1, vimentin and AFAP1L2 (XB130). Additional proteins previously reported as substrates of other tyrosine kinase were also detected, including the EGF and PDGF receptor target Odin. Odin was further analysed and found to contain substantially less pY upon inhibition of SFK activity in SW620 cells, indicating that it is a formerly unknown SFK target in CRC cells.</p> <p>Conclusion</p> <p>Rapid identification of known and novel SFK targets in CRC cells is feasible with SH2 domain affinity chromatography. The elucidation of new SFK targets like Odin in epithelial cancer cells is expected to lead to novel insight into cancer cell signalling mechanisms and may also serve to indicate new biomarkers for monitoring tumor cell responses to drug treatments.</p

    Detection of ubiquitin–proteasome enzymatic activities in cells: Application of activity-based probes to inhibitor development

    Get PDF
    AbstractBackground: Synthetic probes that mimic natural substrates can enable the detection of enzymatic activities in a cellular environment. One area where such activity-based probes have been applied is the ubiquitin–proteasome pathway, which is emerging as an important therapeutic target. A family of reagents has been developed that specifically label deubiquitylating enzymes (DUBs) and facilitate characterization of their inhibitors. Scope of review: Here we focus on the application of probes for intracellular DUBs, a group of specific proteases involved in the ubiquitin proteasome system. In particular, the functional characterization of the active subunits of this family of proteases that specifically recognize ubiquitin and ubiquitin-like proteins will be discussed. In addition we present the potential and design of activity-based probes targeting kinases and phosphatases to study phosphorylation. Major conclusions: Synthetic molecular probes have increased our understanding of the functional role of DUBs in living cells. In addition to the detection of enzymatic activities of known members, activity-based probes have contributed to a number of functional assignments of previously uncharacterized enzymes. This method enables cellular validation of the specificity of small molecule DUB inhibitors. General significance: Molecular probes combined with mass spectrometry-based proteomics and cellular assays represent a powerful approach for discovery and functional validation, a concept that can be expanded to other enzyme classes. This addresses a need for more informative cell-based assays that are required to accelerate the drug development process. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics

    Label-free quantitative proteomics reveals regulation of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and 5'-3'-exoribonuclease 2 (XRN2) during respiratory syncytial virus infection

    Get PDF
    A large quantitative study was carried out to compare the proteome of respiratory syncytial virus (RSV) infected versus uninfected cells in order to determine novel pathways regulated during viral infection. RSV infected and mock-infected HEp2 cells were lysed and proteins separated by preparative isoelectric focussing using offgel fractionation. Following tryptic digestion, purified peptides were characterized using label-free quantitative expression profiling by nano-ultra performance liquid chromatography coupled to electrospray ionisation mass spectrometry with collision energy ramping for all-ion fragmentation (UPLC-MSE). A total of 1352 unique cellular proteins were identified and their abundance compared between infected and non-infected cells. Ingenuity pathway analysis revealed regulation of several central cellular metabolic and signalling pathways during infection. Selected proteins that were found regulated in RSV infected cells were screened by quantitative real-time PCR for their regulation on the transcriptional level. Synthesis of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) and 5'-3'-exoribonuclease 2 (XRN2) mRNAs were found to be highly induced upon RSV infection in a time dependent manner. Accordingly, IFIT3 protein levels accumulated during the time course of infection. In contrast, little variation was observed in XRN2 protein levels, but different forms were present in infected versus non-infected cells. This suggests a role of these proteins in viral infection, and analysis of their function will shed further light on mechanisms of RNA virus replication and the host cell defence machinery

    Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers : implications for autoimmunity in rheumatoid arthritis

    Get PDF
    Introduction: Smoking is a well-established risk factor for rheumatoid arthritis (RA), and it has been proposed that smoking-induced citrullination renders autoantigens immunogenic. To investigate this mechanism, we examined human lung tissue from 40 subjects with defined smoking status, with or without chronic obstructive pulmonary disease (COPD), and control tissues from other organs for citrullinated proteins and the deiminating enzymes peptidylarginine deiminase type-2 (PAD2) and -4 (PAD4). Methods: Lung tissue samples, dissected from lobectomy specimens from 10 never smokers, 10 smokers without airflow limitation, 13 COPD smokers and eight COPD ex-smokers, and control tissue samples (spleen, skeletal muscle, liver, ovary, lymph node, kidney and heart), were analysed for citrullinated proteins, PAD2 and PAD4 by immunoblotting. Citrulline and homocitrulline residues in enolase and vimentin were analysed by partial purification by gel electrophoresis followed by mass spectrometry in 12 of the lung samples and one from each control tissues. Band intensities were scored semi-quantitatively and analysed by two-tailed Mann-Whitney T-test. Results: Within the lung tissue samples, citrullinated proteins, PAD2 and PAD4 were found in all samples, with an increase in citrullination in COPD (P = 0.039), but minimal difference between smokers and non-smokers (P = 0.77). Citrullination was also detected at lower levels in the tissues from other organs, principally in lymph node, kidney and skeletal muscle. Mass spectrometry of the lung samples showed that vimentin was citrullinated at positions 71, 304, 346, 410 and 450 in non-smokers and smokers both with and without COPD. A homocitrulline at position 104 was found in four out of six COPD samples and one out of six non-COPD. Citrulline-450 was also found in three of the control tissues. There were no citrulline or homocitrulline residues demonstrated in a-enolase. Conclusions: We have shown evidence of citrullination of vimentin, a major autoantigen in RA, in both non-smokers and smokers. The increase in citrullinated proteins in COPD suggests that citrullination in the lungs of smokers is mainly due to inflammation. The ubiquity of citrullination of vimentin in the lungs and other tissues suggests that the relationship between smoking and autoimmunity in RA may be more complex than previously thought

    Pharmacological targets in the ubiquitin system offer new ways of treating cancer, neurodegenerative disorders and infectious diseases

    Get PDF
    Recent advances in the development and discovery of pharmacological interventions within the ubiquitin–proteasome system (UPS) have uncovered an enormous potential for possible novel treatments of neurodegenerative disease, cancer, immunological disorder and microbial infection. Interference with proteasome activity, although initially considered unlikely to be exploitable clinically, has already proved to be very effective against haematological malignancies, and more specific derivatives that target subsets of proteasomes are emerging. Recent small-molecule screens have revealed inhibitors against ubiquitin-conjugating and -deconjugating enzymes, many of which have been evaluated for their potential use as therapeutics, either as single agents or in synergy with other drugs. Here, we discuss recent advances in the characterisation of novel UPS modulators (in particular, inhibitors of ubiquitin-conjugating and -deconjugating enzymes) and how they pave the way towards new therapeutic approaches for the treatment of proteotoxic disease, cancer and microbial infection

    Doxycycline Alters the Porcine Renal Proteome and Degradome during Hypothermic Machine Perfusion

    Get PDF
    Ischemia-reperfusion injury (IRI) is a hallmark for tissue injury in donation after circulatory death (DCD) kidneys. The implementation of hypothermic machine perfusion (HMP) provides a platform for improved preservation of DCD kidneys. Doxycycline administration has shown protective effects during IRI. Therefore, we explored the impact of doxycycline on proteolytic degradation mechanisms and the urinary proteome of perfused kidney grafts. Porcine kidneys underwent 30 min of warm ischemia, 24 h of oxygenated HMP (control/doxycycline) and 240 min of ex vivo reperfusion. A proteomic analysis revealed distinctive clustering profiles between urine samples collected at T15 min and T240 min. High-efficiency undecanal-based N-termini (HUNTER) kidney tissue degradomics revealed significantly more proteolytic activity in the control group at T-10. At T240, significantly more proteolytic activity was observed in the doxycycline group, indicating that doxycycline alters protein degradation during HMP. In conclusion, doxycycline administration during HMP led to significant proteomic and proteolytic differences and protective effects by attenuating urinary NGAL levels. Ultimately, we unraveled metabolic, and complement and coagulation pathways that undergo alterations during machine perfusion and that could be targeted to attenuate IRI induced injury

    PfHPRT: a new biomarker candidate of acute Plasmodium falciparum infection.

    No full text
    Plasmodium falciparum is a protozoan parasite that causes human malaria. This parasitic infection accounts for approximately 655,000 deaths each year worldwide. Most deaths could be prevented by diagnosing and treating malaria promptly. To date, few parasite proteins have been developed into rapid diagnostic tools. We have combined a shotgun and a targeted proteomic strategy to characterize the plasma proteome of Gambian children with severe malaria (SM), mild malaria, and convalescent controls in search of new candidate biomarkers. Here we report four P. falciparum proteins with a high level of confidence in SM patients, namely, PF10_0121 (hypoxanthine phosphoribosyltransferase, pHPRT), PF11_0208 (phosphoglycerate mutase, pPGM), PF13_0141 (lactate dehydrogenase, pLDH), and PF14_0425 (fructose bisphosphate aldolase, pFBPA). We have optimized selected reaction monitoring (SRM) assays to quantify these proteins in individual patients. All P. falciparum proteins were higher in SM compared with mild cases or control subjects. SRM-based measurements correlated markedly with clinical anemia (low blood hemoglobin concentration), and pLDH and pFBPA were significantly correlated with higher P. falciparum parasitemia. These findings suggest that pHPRT is a promising biomarker to diagnose P. falciparum malaria infection. The diagnostic performance of this marker should be validated prospectively

    USP4 Auto-Deubiquitylation Promotes Homologous Recombination.

    Get PDF
    Repair of DNA double-strand breaks is crucial for maintaining genome integrity and is governed by post-translational modifications such as protein ubiquitylation. Here, we establish that the deubiquitylating enzyme USP4 promotes DNA-end resection and DNA repair by homologous recombination. We also report that USP4 interacts with CtIP and the MRE11-RAD50-NBS1 (MRN) complex and is required for CtIP recruitment to DNA damage sites. Furthermore, we show that USP4 is ubiquitylated on multiple sites including those on cysteine residues and that deubiquitylation of these sites requires USP4 catalytic activity and is required for USP4 to interact with CtIP/MRN and to promote CtIP recruitment and DNA repair. Lastly, we establish that regulation of interactor binding by ubiquitylation occurs more generally among USP-family enzymes. Our findings thus identify USP4 as a novel DNA repair regulator and invoke a model in which ubiquitin adducts regulate USP enzyme interactions and functions.Research in the S.P.J. laboratory is funded by CRUK Program Grant C6/A11224, CRUK Project Grant C6/A14831 and the European Community Seventh Framework Program grant agreement no. HEALTH-F2-2010-259893 (DDResponse). R.N. was funded by the Daiichi Sankyo Foundation of Life Sciences fellowship. Cancer Research UK Grant C6946/A14492 and Wellcome Trust Grant WT092096 provided core infrastructure funding. S.P.J receives his salary from the University of Cambridge, supplemented by CRUK. The John Fell Fund 133/075 and the Wellcome Trust grant 097813/Z/11/Z funded research performed by B.M.K and R.K..This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.molcel.2015.09.01

    Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads.

    Get PDF
    Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We report a sequencing method for the measurement of replication fork movement on single molecules by detecting nucleotide analog signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect 5-bromodeoxyuridine (BrdU) incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse-labeling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kilobases to generate a whole-genome single-molecule map of DNA replication dynamics and discover a class of low-frequency stochastic origins in budding yeast. The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git

    Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic β-subunits

    Get PDF
    AbstractBackground: The 26S proteasome is responsible for most cytosolic proteolysis, and is an important protease in major histocompatibility complex class I-mediated antigen presentation. Constitutively expressed proteasomes from mammalian sources possess three distinct catalytically active species, β1, β2 and β5, which are replaced in the γ-interferon-inducible immunoproteasome by a different set of catalytic subunits, β1i, β2i and β5i, respectively. Based on preferred cleavage of short fluorogenic peptide substrates, activities of the proteasome have been assigned to individual subunits and classified as ‘chymotryptic-like’ (β5), ‘tryptic-like’ (β2) and ‘peptidyl-glutamyl peptide hydrolyzing’ (β1). Studies with protein substrates indicate a far more complicated, less strict cleavage preference. We reasoned that inhibitors of extended size would give insight into the extent of overlapping substrate specificity of the individual activities and subunits.Results: A new class of proteasome inhibitors, considerably extended in comparison with the commonly used fluorescent substrates and peptide-based inhibitors, has been prepared. Application of the safety catch resin allowed the generation of the target compounds using a solid phase protocol. Evaluation of the new compounds revealed a set of highly potent proteasome inhibitors that target all individual active subunits with comparable affinity, unlike the other inhibitors described to date. Modification of the most active compound, adamantane-acetyl-(6-aminohexanoyl)3-(leucinyl)3-vinyl-(methyl)-sulfone (AdaAhx3L3VS), itself capable of proteasome inhibition in living cells, afforded a new set of radio- and affinity labels.Conclusions: N-terminal extension of peptide vinyl sulfones has a profound influence on both their efficiency and selectivity as proteasome inhibitors. Such extensions greatly enhance inhibition and largely obliterate selectivity towards the individual catalytic activities. We conclude that for the interaction with larger substrates, there appears to be less discrimination of different substrate sequences for the catalytic activities than is normally assumed based on the use of small peptide-based substrates and inhibitors. The compounds described here are readily accessible synthetically, and are more potent inhibitors in living cells than their shorter peptide vinyl sulfone counterparts
    corecore